The P-adic Cm-method for Genus 2

نویسندگان

  • T. HOUTMANN
  • D. KOHEL
چکیده

We present a nonarchimedian method to construct hyperelliptic CM-curves of genus 2 over finite prime fields. Throughout the document we use the following conventions (this is only for the reference and use of the authors): d degree of the base field of the curve, i.e. C/F 2 d s number of isomorphism classes, in elliptic curve case s = h K n degree of an irreducible component of class invariants K a CM field K 0 the real subfield of K K * the reflex CM field of K K * 0 the real subfield of K * j 1 absolute Igusa invariant J 5 2 J

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The 2-Adic CM Method for Genus 2 Curves with Application to Cryptography

The complex multiplication (CM) method for genus 2 is currently the most efficient way of generating genus 2 hyperelliptic curves defined over large prime fields and suitable for cryptography. Since low class number might be seen as a potential threat, it is of interest to push the method as far as possible. We have thus designed a new algorithm for the construction of CM invariants of genus 2 ...

متن کامل

ON RUBIN’S VARIANT OF THE p-ADIC BIRCH AND SWINNERTON-DYER CONJECTURE

We study Rubin’s variant of the p-adic Birch and Swinnerton-Dyer conjecture for CM elliptic curves concerning certain special values of the Katz two-variable p-adic L-function that lie outside the range of p-adic interpolation.

متن کامل

Higher dimensional 3-adic CM construction

We outline a method for the construction of hyperelliptic curves of genus 2 over small number fields whose Jacobian has complex multiplication and ordinary good reduction at the prime 3. We prove the existence of a quasi-quadratic time algorithm for canonically lifting in characteristic 3 based on equations defining a higher dimensional analogue of the classical modular curve X0(3). We give a d...

متن کامل

Complex multiplication and canonical lifts

The problem of constructing CM invariants of higher dimensional abelian varieties presents significant new challenges relative to CM constructions in dimension 1. Algorithms for p-adic canonical lifts give rise to very efficient means of constructing high-precision approximations to CM points on moduli spaces of abelian varieties. In particular, algorithms for 2-adic and 3-adic lifting of Frobe...

متن کامل

p-ADIC HEIGHT PAIRINGS AND INTEGRAL POINTS ON HYPERELLIPTIC CURVES

We give a formula for the component at p of the p-adic height pairing of a divisor of degree 0 on a hyperelliptic curve. We use this to give a Chabauty-like method for finding p-adic approximations to p-integral points on such curves when the Mordell-Weil rank of the Jacobian equals the genus. In this case we get an explicit bound for the number of such p-integral points, and we are able to use...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005